High Q Cavities for the Cornell ERL Main Linac

Ralf Eichhorn
Cornell University, CLASSE
5 GeV, 100 mA CW beam, 8 pm emittance, 2 ps bunches

~200 W HOM power/cavity
CW operation, $Q(1.8 \text{ K}) = 2 \times 10^{10} @ 16.2 \text{ MV/m}$
Science with an Energy Recovery Linac

Cornell Energy Recovery Linac:
Project Definition Design Report

June 2013

ERL documentation:
(1) Science, (2) Generic design

- Science case gathered in international workshops
- Design report
 - 530 pages between conceptual design and engineering design
 - Access at www.classe.cornell.edu/ERL/PDDR
• HTC-1: Follow vertical assembly procedure as closely as possible

• HTC-2: Include side mounted, **high power RF input coupler**

• HTC-3: Full cryo-module assembly: high power RF input coupler and **beam line HOM loads**
• Cavity exceeded Q specification at 1.8 K by 50%, reaching 3×10^{10}
• $Q(1.6 \text{ K, 5 MV/m}) = 6 \times 10^{10}$
• Exceeded gradient specifications
• RF-based and calorimetric-based Q measurements yielded consistent values
Most of the Parts:
316 Stainless Steel
with 5μ Copper Coating
Main Linac Input Coupler Testing

Power rating: 5 kW CW
Headroom for 10 kW

Designed by Cornell
Built by CPI
- Quality factor, gradient specifications achieved
- Administrative limits prevented higher field measurements (not limited by quench)
- Lower Q (than HTC-1) due to high radiation levels
Beamline HOM absorbers strongly damp dipole HOMs to under $Q \sim 10^4$
Initial Cooldown at 16.2 MV/m

Q(2.0 K) = 2.5 \times 10^{10}
Q(1.8 K) = 3.5 \times 10^{10}
Q(1.6 K) = 5.0 \times 10^{10}

10 K thermal cycle at 16.2 MV/m

Q(2.0 K) = 3.5 \times 10^{10}
Q(1.8 K) = 6.0 \times 10^{10}
Q(1.6 K) = 10.0 \times 10^{10}
Are we (just) lucky?
Total 64 cryomodules, each:
- six packages of 7-cell cavity/Coupler/tuner
- a SC magnets/BPMs package
- five regular HOMs/two taper HOMs
• Dec ‘12 – Design completed
• Jan ‘13 – Order 6 remaining input couplers (6 month fab)
• Feb ‘13 – 3 unstiffened cavity built, testing started
• Apr ‘13 – Award vacuum vessel PO (6 month fab) & HGRP (6 month)
• July ‘13 – Production of 3 stiffened cavities started
• Sept. ‘13 – In-house fabrication of string components complete (tuners, HOMs, tapers…)
• Nov. ‘13 – Begin string assembly in clean room
• March ‘14 – Begin cold mass assembly and instrumentation (outside clean room)
• End of ‘14 – MLC ready for testing
Un-stiffened cavities (#2, #3, #4)

ERL 7-cell surface preparations
1. Bulk BCP (140um)
2. Degassing in TM furnace (650C*4days)
3. Freq. and flatness Tuning
4. Final BCP (10um)
5. 120C bake in TM furnace (120C*48hrs)
6. HF rinse
7. VT w/ T-map
Process summary ERL cavities

<table>
<thead>
<tr>
<th></th>
<th>ERL7-1 (HTC)</th>
<th>ERL7-2</th>
<th>ERL7-3</th>
<th>ERL7-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk BCP</td>
<td>140um (witness sample)</td>
<td>135 ± 10 um (cavity equator)</td>
<td>138 ± 5 um (cavity equator)</td>
<td>132 ± 7 um (cavity equator)</td>
</tr>
<tr>
<td>Degassing</td>
<td>Jlab, 650C*10hrs</td>
<td>TM-furnace 650C*4days</td>
<td>TM-furnace 650C*4days</td>
<td>TM-furnace 650C*4days</td>
</tr>
<tr>
<td>tuning</td>
<td>88%</td>
<td>94%</td>
<td>91%</td>
<td>92%</td>
</tr>
<tr>
<td>Final BCP</td>
<td>10 um</td>
<td>10 um</td>
<td>10 um</td>
<td>10 um</td>
</tr>
<tr>
<td>120C bake</td>
<td>On insert</td>
<td>TM-furnace</td>
<td>On insert</td>
<td>TM-furnace</td>
</tr>
<tr>
<td>HF rinse</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VT 1st (1.8K)</td>
<td>17MV/m, 1.6e10 (No T-map, old insert)</td>
<td>17MV/m, 1.53e10 w/ T-map</td>
<td>Limited by FE w/ T-map</td>
<td>17.4MV/m, 2.4e10 w/ T-map</td>
</tr>
<tr>
<td>Re-process</td>
<td>-BCP(10um) -120C bake (in clean room, old set-up) -HF rinse</td>
<td>-Cavity length is too long, re-built & re-test are planned</td>
<td>Re-process to cure FE -BCP(10um) -120C bake(TM-furnace) -HF rinse</td>
<td>HTC3, 16.2MV/m, 6.0e10 @1.8K</td>
</tr>
<tr>
<td></td>
<td>17MV/m, 2.8e10 No T-map (PC down)</td>
</tr>
</tbody>
</table>
Vertical Test Cavity #4

1.00E+11

1.00E+10

1.00E+09

Eacc [MV/m]

Qo

2K meas.

1.8K meas.

1.6K meas.

ERL7-4 2K, 1st power rise (before quench)

ERL7-4 2K, 2nd power rise (after quench)

ERL7-4, 1.8K

ERL7-4, 1.6K
Are we (just) lucky?

Well, at least we are happy!
ERL Injector Prototype:
Achievements to date:

- 75 mA average current @ 4 MeV
- 0.3 μm emittance @ 77 pC, 8 MeV
Using a Na$_2$KSb photocathode, ran over 8 hours at 65 mA (2000 C) with a 2.6 day 1/e cathode lifetime. Reached as high as 75 mA for a short time.
This work is supported by the National Science Foundation grant DMR-0807731

and Department of Energy grant DE-SC0003965

Thanks to:

Paul Bishop, Benjamin Bullock, Brian Clasby, Holly Conklin, Joe Conway, Brendan Elmore, Fumio Furuta, Andriy Ganshyn, Mingqi Ge, Terri Gruber, Yun He, Vivian Ho, Georg Hoffstaetter, Roger Kaplan, John Kaufman, Gregory Kulina, Matthias Liepe, Tim O’ Connell, Hassan Padamsee, Peter Quigley, John Reilly, Dave, Rice, James Sears, Valery Shemelin, John Sikora, Eric Smith, Karl Smolenski, Maury Tigner, Vadim Veshcherevich, Steven Full, Daniel Gonnella, Nick Valles, Sam Posen, Jared Maxon, Siddharth Karkare, Adam Bartnik, Bruce Dunham, Ivan Bazarov, Luca Cultrera, John Dobbins, Hyeri Lee, Yulin Li, Chris Mayes