Workshop IGLEX “Andromède & ThomX”

23 June 2016, LAL Orsay

The X-line of ThomX

jerome.lacipiere@neel.cnrs.fr
mjacquet@lal.in2p3.fr
Brightness panorama of X-ray (10-100 keV) sources

Synchrotron: not very practical, limited access time
High power, monochromaticity, coherence.

X-ray tube: lab sources
Lack of power, monochromaticity, coherence.
Brightness panorama of X-ray (10-100 keV) sources

CCS (X-ray flux $> 10^{12} - 10^{14}$ ph/sec)

CCS principle

- **e\(^{-}\) beam (MeV)**
- **20-75 MeV**
- **30-100 keV**
- **X ray beam**
- **power laser**

Workshop IGLEX "Andromède & ThomX", LAL, 23 June 2016
Brightness panorama of X-ray (10-100 keV) sources

CCS (X-ray flux > $10^{12} - 10^{14}$ ph/sec)

- Compactness (surface ~ 100 m2)
- High intensity ($10^{12} - 10^{14}$ ph/sec)
- Energy tunable beam and High X-ray energy
- High quality beam (brightness $10^{11} - 10^{15}$)

Some powerful analyzes currently realized at synchrotrons and requiring a high brightness beam could be largely developed in a lab size environment (hospitals, labs, museums).

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
Brightness panorama of X-ray (10-100 keV) sources

Next future (supra machines)

Near future ("hot" machines)

<table>
<thead>
<tr>
<th>Flux</th>
<th>10^{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brighness</td>
<td>5×10^{11}</td>
</tr>
<tr>
<td>Transv. source size</td>
<td>40-100 μm</td>
</tr>
<tr>
<td>E_X on-axis</td>
<td>30-90 keV</td>
</tr>
</tbody>
</table>

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
The Compton beam

\[E_X \sim \frac{4 \gamma^2 E_{ph}}{1 + (\gamma \theta)^2} \]

Univocal relation between energy \(E_X \) and diffusion angle \(\theta \)

Conical beam

\[E_X : E_e = 50 \text{ MeV} \]

\[\theta \sim 10 \text{ mrad} \rightarrow 22 \text{ keV} \]

\[\text{On axis X-rays} \rightarrow 45 \text{ keV} \]
2 ways to use a Compton beam

1. Using the 2D divergent beam

- Pink beam (1% - 30% bw)
- Flux $\sim 10^{11} - 10^{13}$ ph/s
- Several cm diameter beam

→ Measure large sample with no more need to move it (patient, animals, material …)

2. Using the central part of the beam after focusing

Focus device (Refractive lenses (CRL), Capillary optics …)

- Quasi-monochromatic beam ($\sim 0.1\% - 0.01\%$ bw)
- Flux $\sim 10^8 - 10^{10}$ ph/s
- $< $ mm diameter beam

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
TABLE 1
Beam monitoring & focusing

Connection pipe + radiation protection

“TABLE 2”
X-Ray experiments
X-RAY OBTURATOR

Valve system

Purpose
• Cutting the beam for all downstream devices
• Measuring the background noise

Design
• Sliding tungsten shutter + electrical actuator
• 2 external end-switches
• Beryllium window + nitrogen flange
SLIT SYSTEM

Alignment device + Beam shape

Purpose
- Beam selection
- With slit system #2, alignment of X-line

Design
- Standard JJ X-Ray slit system design
- Customized stainless steel body
 - (vacuum tightness)
- Linear encoders on all movements

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
FLUORESCENT SCREEN

Beam detection

Purpose

• Detecting the presence of the beam

Design

• Retractable fluorescent screen
• CCD camera
• Si diode (redundant information)
DIODES DETECTOR

Intensity variation measurement

Purpose
- Measuring beam intensity variations

Design
- 2 Si photodiodes with symmetric translation movement
- 2 possible positions for the whole detector
Thom X – X Line – **Table 1**

BEAM PROFILER

Absolute position measurement

Purpose

- Measuring beam absolute position

Design

- Translation of a caliper holding 2 tungsten wires inside the beam, along 1 direction
- 2 possible positions for the whole detector
- End of the line: Beryllium window + nitrogen flange

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
Thom X – X Line – Table 1

TRANSFCATOR

Beam collimation & focus

Purpose
- Collimating / focusing the beam core for experiments on table 2

Design
- Translation of beryllium lenses inside the beam, aligned to the beam axis
- Independent positioning system
- Helium or nitrogen flush
TRANSFOCATOR HOLDER
Alignment of the Transfocator

Purpose
- Independent alignment of the transfocator

Design
- Motorized manipulator with 4 independent movements
- 2 translations / 2 rotations
- High accuracy / repeatability
Thom X – X Line – **Table 1**

GRANIT TABLE

Support of the TABLE 1

Purpose

- Alignment of the whole line of detectors on table1

Design

- Motorized assembly with 4 independent movements, 5 granite tables
- High range translation: extracting the whole table.
- High accuracy / repeatability
Thom X – X Line – **Table 1**

STATUS OF TABLE 1

Manufacturing & assembly
- All detectors, but transfocator
- Transfocator holder: assembly in progress

Tests
- Table 1: movements are OK, accuracy & repeatability to be checked
- All detectors: to be tested at ESRF FAME beamline in September
RADIATION PROTECTION
Beam Shutter + Lead Shield

Purpose
- Safety element: protection of people inside the X-hutch

Design
- Beam shutter is connected to the lead shield
- Lead shield is adjusted to the connection pipe

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
Thom X – X Line – **Connection pipe**

- Decoupled of the X-Hutch elements
- Minimizing air switches

Primary vacuum chain : 10^{-3} mbar
**Thom X – X Line – **Table 2

"TABLE 2" EQUIPMENT

Purpose: X-ray experiments

Status
- Still under definition – no CAD design yet
- Highly versatile equipment

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
Thom X – X Line – **Table 2**

CONNECTION PIPE HOLDER

Design
- Adjustable holder refurbished from ESRF
- 2 degrees of freedom
Thom X – X Line – **Table 2**

SLIT SYSTEM #2

Purpose
- Beam selection
- With slit system #1, alignment of X-line

Design
- Custom JJ X-Ray slits, aperture 150×150mm

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
Table 2

GRANIT TABLE

- On the ground
- Reference horizontal surface for all devices
- Allowing horizontal movements with rails or air cushion
Thom X – X Line – **Table 2**

MONOCHROMATOR

Purpose
- Beam wavelength selection

Design
- Hexapod will allow 3 rotations around « Monochromator IP »
- Manual translation along X axis (insertion / extraction)
Thom X – X Line – Table 2

SLIT SYSTEM #3

Purpose
- Cleaning the beam, limiting diffusion

Design
- Under definition, aperture 30×30mm
- 300mm translation along beam axis
Thom X – X Line – Table 2

GONIOMETER

- Moving plate + embedded systems

2 movements

- Rotation around vertical axis, centered on monochromator IP
- Translation along beam axis to put sample origin on monochromator IP
SAMPLE HOLDER

Purpose: Sample positioning and orienting

Design
- Hexapod allowing 6 degrees of freedom (orbital movement + 3 translations), working volume 300×300×300mm
- Turntable allowing 360° rotation around axis perpendicular to hexapod table
Thom X – X Line – **Table 2**

DETECTOR HOLDER

2 primary movements
- Rotation around vertical axis crossing sample origin
- Horizontal translation

2 secondary movements
- 2 concurrent rotations for Soller slit system

Workshop IGLEX “Andromède & ThomX”, LAL, 23 June 2016
Thom X – X Line – Table 2

STATUS OF “TABLE 2”

Work in progress…
Beam monitoring

Highly versatile equipment
Outlook coming next ...

Dosimetry - Beam characterisation (Johann Plagnard)
Outlook coming next ...

Beam monitoring

→ Dosimetry - Beam characterisation (Johann Plagnard)

→ Imaging - Therapy (Alberto Bravin)
Outlook coming next ...

→ Dosimetry - Beam characterisation
→ Imaging - Therapy
→ Fluorescence - Diffraction

Thank you