Top

Home page > Publications > Development of radioactive beams at ALTO: Part 1. Physicochemical comparison of different types of UCx targets using a multivariate statistical approach

Development of radioactive beams at ALTO: Part 1. Physicochemical comparison of different types of UCx targets using a multivariate statistical approach

Julien Guillot (a*), Sandrine Tusseau-Nenez (b), Brigitte Roussière (a), Nicole Barré-Boscher (a), François Brisset (c), Sylvain Denis (d)

(a) Institut de Physique Nucléaire d’Orsay CNRS/IN2P3 UMR 8608 - Université Paris Sud - Université Paris Saclay, F-91406 Orsay Cedex
(b) Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique - Université Paris Saclay, Route de Saclay, F-91128 Palaiseau
(c) Institut de Chimie Moléculaire et des Matériaux d’Orsay CNRS UMR 8182 - Université Paris Sud - Université Paris Saclay, F-91405 Orsay Cedex
(d) Institut de Chimie et des Matériaux Paris-Est CNRS UMR 7182 - Université Paris Est Créteil, F-94320 Thiais


Abstract :
The optimization of the microstructure of the UCx target is a key point since many years in the field of ISOL method. The ultimate goal is to facilitate the release of the fission products, especially those with short half-lives. Fourteen UCx samples were synthetized from different uranium and carbon sources using three mixing protocols. All carburized samples were systematically characterized in terms of nature and proportion phases, grain and aggregate size, open and close porosity proportion and open pore size distribution. Our results were analysed using a multivariate statistical approach in order to remove any subjective bias. Strong correlations between the physicochemical characteristics of the samples as well as the impact of the synthesis process have been highlighted. In particular, using carbon nanotubes as carbon source combined with a new method of mixing is the key parameter to limit the sintering and to obtain samples with small grains and a high porosity well distributed over small pores. Moreover the microstructure obtained proved to be stable at high temperature.

See online : NIM in Physics Research Section B : Beam Interactions with Materials and Atoms, Volume 433, 15 October 2018, Pages 60-68


 

IPN

Institut de Physique Nucléaire Orsay - 15 rue Georges CLEMENCEAU - 91406 ORSAY (FRANCE)
UMR 8608 - CNRS/IN2P3

Ce site est optimisé pour les navigateurs suivants Firefox, Chrome, Internet explore 9